New Technology to Create Chiral Light Fields



Schematic of the 4π microscopic system and generated 3×3×3 multiple chiral spots in 3D. (Image by XIOPM)


  Chirality is one of the essential attributes of nature. Chiral molecules paired in left- and right-handed forms are known as enantiomers. Although the enantiomers share almost all properties except the handedness, they perform entirely different biological functions. Now, molecular chirality distinguishing plays an important role in biological, chemical, and pharmaceutical study, as well as in the industry. 


  Interestingly, a handedness-dependent response can occur only when a chiral light beam illuminates a corresponding chiral matter. This light-matter interaction phenomenon has drawn much attention from scientists and already spawned various new materials. Undoubtedly, how to create chiral light fields is one of the keys to the research.


  A research team led by Prof. YAO Baoli from the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed a new technology to create chiral light fields flexibly, so that addressed the "how-to" question. This work was published in the journal Nanoscale recently.


  Unlike previous approaches, the new technology performed on a 4π microscopic system and utilized radially or azimuthally polarized beams to generate the chiral light fields.


  "With this technology, the properties such as location, number, and handedness of the focused chiral spots can be simultaneously and independently controlled. It allows us to arbitrarily adjust any of the properties, depending on the application requirements while without trade-offs," said Prof. YAO.


  The research team demonstrated a quasi-spherical 3D super-resolution chiral spot when considering the longitudinal component of the focused field only. Arbitrary chiral optical field with multiple spots carrying one or both two handedness of optical chirality, for example, 1D along one axis, 2D in some plane or 3D in spatial, can be generated by the multiple phase masks (MPMs) which designed analytically.


  This controllable chiral optical field shows excellent potential to be applied in diverse researches, such as particle trapping, chiral detection, and enantioselective separation at the nanometer scale.